Coefficient of m can be factored into $(2l - s)(29l + 7s)^2$ and the coefficient of m^2 is $-2(29l + 7s)^2$. So if $l_0 = 29l + 7s$, (70) becomes

$$Es(l + 2s) - l_0^2(2l - s)m + 2l_0^2m^2 = 0. \quad (72)$$

Letting $M = Es(l + 2s)/l_0^2$,

$$M - (2l - s)m + 2m^2 = 0 \quad (73)$$

If $l_7 = 2l - s$, then $m = \frac{1}{4}(l_7 \pm \sqrt{l_7^2 - 8M})$. Choosing the plus sign and replacing M, l_0, and E, in that order, in the expansion of this formula, we obtain

$$m = \frac{1}{4} \left(l_7 + \sqrt{l_7^2 - \frac{8s(l + 2s)(50l^2 + 25ls + 3s^2)}{(29l + 7s)^2}} \right).$$

This is the answer in the recipe, but the description there is modified to facilitate numerical calculation for given l and s. Aida lets $l_0 = 7(4l - s) + l$ and $l_7 = 2l - s$, which enables him to say that

$$m = \frac{1}{4} \left(l_7 + \sqrt{l_7^2 - \frac{8s(l + 2s)(25l(l_7 + 2s) + 3s^2)}{l_0^2}} \right).$$

For $l = 5$ and $s = 1$, the second root, $(l_7 - \sqrt{l_7^2 - 8M})/4$, is 0.0468776, which is positive, but $(l_7 + \sqrt{l_7^2 - 8M})/4 = 4.45312$ is the relevant answer. The value of L was not given, but as the table appended to the solution to Problem 8 indicates, it is 7.13673.

Aida appends a short table to this solution: